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I. INTRODUCTI1ON

In recent years, a number of authors have considered the problem
of wake collapse in an incompressible, stratified fluid. These treat-
ments have usually involved a version of the linear Boussinesq approx-
imation, though some numerical work has appeared. While there seems
to be a consensus about the phenomenology in the case of fully mixed
wake (for which the linear approximation is, of course, invalid), it
has seemed to us useful to treat a particularly simple version of the
linear problem, for which an exact solution is obtainable. The re-
sults contain some surprises, and provice some insight into the limi-
tations of the linear treatment.




II. BASIC EQUATIONS

We study a linearly stratified fluid, with no boundaries, whose
unperturbed density po(z) ir the vicinity of the region of interest
varies only in the vertical z-direction, and gradually enough to
justify a linear approximation. Thus

05(2) = 05y - B2 (1)

where Poo 1s a "mean" density for the problem. The initial value
problem is obtained by perturbing the density slope inside a cylinder
of radius a

6p(t=0) = ez re<a

(2)

where the fully mixed case can be obtaired formally by setting ¢ = 8.
This state of affairs is illustrated in Fig. 1. We are wrrkingy in

a two-dimensional coordinate sy.tem with axes z (vertical) and x
(horizontal), with everything assumed independent of y. We will

also use polar coordinates (r,a) in the plane of the problem, with
the polar axis vertical.

Newton's second law, linearized, is

Y
pa—t=’zp'ogg (3)

where v is the fluid velocity (in the x-z plane), p is the pressure,
g the acceleration of gravity, and z a vertical unit vector. Since
the fluid is assumed incompressible, we have
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divy =R 4y g=0 (4)

which allows us to introduce the stream function y, a vector in the

y-direction, defired by
v = curl ') (5)

The curl of Eq. 3 yields

P (curl curl y) = - g % X E (6)

2_
00 3t
where the insertion of 0o is usually called the Boussinesq approxi-
mation. It amounts to taking into account any density gradient that
leads to a force (is multiplied by g), but no other. Differentiating
Eq. 6 with respect to time leads, in view of Eq. 4, to

2
2 A%y
) 2 2
—_— 7 = - N 7’“’ (7)
at2 L P )

where we have used the linear approximation, and have defined the
Vaisala frequency

2 9 dpo
N® = - 5~ 3~ 95/000 (8)
o

which we will treat as a constant hereafter. (Obviously, we could
have chosen Po exponential, instead of as given in Eq. 1.)

Clearly, in view of Eq. 4, sp can be obtained from y, so that
Eq. 7, with the initial condition Eq. 2, is our problem.

It begs for Fourier analysis, and the (exact) answer is




, [ Jl(J K222 4 (Nt kx)Q)
bp - ¢za kdk J?(ka) . (9)

n

2 2
0 K'2” 4 (Nt ¢ k)

where the &+ means that the integral should be evaluated with each of
the two signs, and the results averaged. The corresponding expression
for y is obtained from Eq. 9 by multiplying the integrand by 2N/k8,
and taking the difference of integrals for the two signs. (There are
other simpler ways to get the velocity distribution.)

It is worth reemphasizing that Eq. 9 is the exact solution to a
linear problem.

-l \

FIGURE 1. Initial Density Profile at x =0
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IIT. QUADRATURES

The evaluation of Eq. 9 is greatly aided by the observation that
the expression in the integrand involving the square roots admits of
an expansion in terms ot Tschebysheff polynomials of the second kind.

Explicitly, if w2 = u? + v2 - 2uv cos v,

then
Jy(w) - J (u) J,. (v)
L - 22(1 sy LM LM p(cos ) (10)
where
_ sin [(m+1)Y]
Am(cos Y) = i (11)

Thus, after a bit of arithmetic, we find

2282 - 4 CcOS |§25‘+12a| +1(Nt)
bp = —PS'Z(-U (24+1)

cos &
1=0

f J2(ka) J2€+l(kr) dk (12)
0

Before proceeding to the final form, some observations about Eq. 12
are in order.




First & d foremost, inside the original cylinder, where r < a,
only the fir:t term in Eq. 12 is non=-vanishing. Thus, exactly,

Jl(Nt)

8p = 22¢ —N-t-—; r <a (13)

The original linear (proportional to z) perturbation inside the
cylinder remains linear, overshoots its correction, an! finally damps

out.

The fluid velocities for r < a are most easily obtained from

Eq. 13, by noting that v

v = -

A

= b5
5 at,(6p), so that

22

—g J2(Nt) (14a)

In view of the incumpressibility condition (Eq. 4), we also have

X

v =28 g (Nt) (14b)
gt ¢

50 that the fluid particles inside the original cylinder move on right
hyperbolae, overshooting their ultimate positions on the first pass.
The ultimate displacement of a fluid particle that starts inside the

original cylinder is given by

AX

Az

so that the fluid particle moves
bola to reach the level which is

X
g

(15)
[T
8

just far enough down its own hyper-
appropriate for it. 1In particular,

the original circular cross secticn of the cylinder deforms into an

ellipse of semi-major axis a(l + %) ard semi-minor axis a(l - %),
after oscillating around this shape.
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We now turn to the behavior of the fluid for r > a, for which
all terms except the first in Eq. 12 contribute. We need, for r > a,
and for ¢ =2 1,

) B L T Wl 15 | IR
J2(ka)J2L+l(kr) dk = Za—i pL-l- L + {,*l 2(« 3 \ )

0
where the PL are conventional Legendre polynomials, whose argument is
1l - 251—. The expression in square brackets can be written in other

2
r
forms, using the many identities involving the Legendre polynomials.

If we define

P,_1(8) = P, (&)
PL-l(g) = QPL(g) + PL+1(g) bk 12{‘ ~ T&«i-

i

GL(l;)

P, (£) - P (g)]
-1 4+1
-2 I:(l -£) PL(E) - T | (17)

then the first two are given by

2 4
2a° Y. 4a
Gl( - -—2) 5 (18a)
v r
2 4 6
G _2a°)_ 1l2a _ lea , etc. (18b)
2 2 4 b
r r 4

We have, then,

® J (Nt) 2
_ 2 4 cos [ (24+1) 24+1 2a
b0 = 28 Y (-Dk2us) 505 : al “2¢41 GL( - 7) (19)

=1 r

e J (Nt) o 2

_ 22z¢ad 4-1 cos | (24+1 24+1 _ 2a
- 5 Z('l) cos g Nt H{,( 7) (20)

r =1 r

r>a

I ="R =



where (again, with ¢ - 1 - 223 )
5

‘ 2

- 24+1)r
| ”L(g) = o S_:l?.)_. G((;)
; 2

- r H
! = (24+1)P (g) + ;:5 (PL*l(g) - 'L-l(g)) (21)

It is now interesting to observe that, as r - a, HL(!) - (-I)L(2L ¢ 1),

so that
' : J,, . (NE)
' bor—a*) = -22¢ ) °°s£~g§‘;1)°l U (2001 (22)
t=1

Comparing this with Eq. 13, we find an exact expression for the
density discontinuity across the surface of the cylinder

Sp(r-a”) - bp(r=a’)

m

Ao

(Nt)
22€E (24+1) COM ‘l (23)

cos
=0

This sum can be extended to -, and carried out exactly.
We find

A0 = €2 cos(Nt sin a) (24)

an unexpected result. From Eqs. 24 and 13, we find

’ ’ \ = Jl(Nt)
p(r-a’) = ¢z |2 & - cos(Nt sin 4) (25)




which does not go to zero as t..~ , hut which oscillates more &nd more
rapidly as a function of g@. Such behavior is indicative of an insta-
bility {n a more realistic calculation, thouah the relation to the
expected Rayleigh instability on the surface is unclear.

We turn finally to the behavior at large distances, for which

we need the behavior of the HL for £ near unity

HL(g) - = (2441) 9, [(2(.*1) %] y T > a (26)

2
in which we have also assumed 1 << { << §5 for convenience. It will
be seen below that this is the range of interest for 4. This leads
to

J (Nt)
o 2 3 ooy il 2 (4]

cos

(27)

(Recall, as always, that \, can be obtained from 6p through Yol = % 3% (5p),

and V. f rom Ve through the incompressibility condition Eq. 4.)

For any given point (r,a) and time, the terms in the sum (Eq. 27)
increasc in magnitude with ¢, and oscillate rapidly in sign, so it is
appropriate to look for a "constant phase" value of {4 as a means of
estinating the sum. By either this method, or by a direct saddle-
point integration in Eq. 9, we find that

! QCZGQ Nta . 28
bp ~ ==— tan a sin(Nt cos a) Jy (5 sina (28)
r

for r >> a. This represents a pulse of frequency N cos a, which

R r .
o ~ . * The denominator is
passes a point (r, @) at a time t Na sin g e

the group velocity of a wave of wave-number ~ l/a, in the correct
direction, where N cos o is the frequency of such a wave. (Recall
that the group and phase velocities of Vaisala waves are mutually

orthogonal.)




IV. CONCLUSIONS AND CAVEATS

The behavior of the solution (Eq. 28) for large distances from
the source contains no surprises, and represents the radiation from
the source of the expected pulse of Vaisala waves, necessary to get
rid of the energy stored in the initial perturbation.

On the other hand, the behavior near the perturbation has a
nunber of unrealistic features. The rapidly oscillating (in space)
behavior just outside the original cylinder at long times cannot
appear in the solution of a realistic hydrodynamic problem. Since
the solution is exact, this difficulty must be ascribed to the model.
In addition, the velccity of the fluid displays an infinite shear on
the surface of the cylinder, and this too, in a realistic problem,
woyld lead to Rayleigh instability. It would seem foolhardy, there-
fore, to set ¢ = g, and use a linear treatment to study the fully

mixed wake collapse problem.
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